
1  
 

 
 
 
 
 
 
 
 
Easy Commodity Trader API Guide 
 

Version 4.6.3 

  



2  
 

TABLE OF CONTENTS 

1 Version Information and Change Log .......................................................................................................... 3 

2 Introduction ................................................................................................................................................. 6 

3 Quick Start ................................................................................................................................................... 7 

4 Using the API ................................................................................................................................................ 8 

4.1 Generating ProtoBuf Contracts ........................................................................................................... 8 

4.2 Connecting to ECT Message Broker..................................................................................................... 8 

4.3 Logging Into ECT .................................................................................................................................. 9 

4.4 Session time-out and sending KeepAlives ......................................................................................... 10 

4.5 Session duplication ............................................................................................................................ 13 

4.6 Good Till Session order lifecyle ......................................................................................................... 13 

5 Using the Trading API ................................................................................................................................. 13 

5.1 Operational modes ............................................................................................................................ 13 

5.2 Request/Response ............................................................................................................................. 13 

5.3 Subscriptions ..................................................................................................................................... 14 

5.3.1 Subscription Workflow .................................................................................................................. 15 

6 Working with Data ..................................................................................................................................... 17 

6.1 Static Data ......................................................................................................................................... 17 

6.2 Reference data .................................................................................................................................. 17 

6.3 Subscription Data .............................................................................................................................. 20 

6.3.1 Product instances .......................................................................................................................... 20 

6.3.2 Public Orders ................................................................................................................................. 22 

6.3.3 Private Orders ................................................................................................................................ 23 

6.3.1 Trades ............................................................................................................................................ 25 

6.3.1 RFQs ............................................................................................................................................... 27 

6.4 Order Management ........................................................................................................................... 30 

6.5 Trades ................................................................................................................................................ 35 

6.6 RFQ Management .............................................................................................................................. 36 

 

  



3  
 

1 VERSION INFORMATION AND CHANGE LOG 

 

Version Description Date Author 

0.1 Initial Draft 2016-03-07 James Watson 

1.1 Market Depth 2016-09-16 Qiming Liu 

1.2 Pricing Update 2016-10-28 Qiming Liu 

1.3 Execution Feedback 2017-03-13 Qiming Liu 

1.4 Market Segments Static Data  2017-06-22 Fabian Ottjes 

3.0 Feature alignment with ECT 2018-01-22 Albert Rodriguez 

3.1 Adding Good Till Session Feature 2018-02-15 Albert Rodriguez 

3.4 Changes on Orders 2018-04-26 Albert Rodriguez 

3.5 API tidy up for release 2018-05-25 Albert Rodriguez 

3.6 Documentation clean-up 2018-05-31 Albert Rodriguez 

3.7 Datetime alignment 2018-06-11 Albert Rodriguez 

3.8 Datetime rollback 2018-06-15 Albert Rodriguez 

4.0 New API version 2018-07-24 Joe Field 

4.1 RFQs 2018-08-03 Fabian Ottjes 

4.2 RFQs: Currency support 2018-09-05 Fabian Ottjes 

4.3 Reference Data: Added market area ids 
for order submission 

2018-09-19 Joe Field 

4.4 Trade Message Quantity Flow 2018-09-24 Fabian Ottjes 

4.5 Removed Market Segments 2018-09-28 Fabian Ottjes 

4.6 Introduction of ProductDefinition as 
replacement for Instrument 

2018-11-13 Jan Truckenbrodt 

 

Version 0.1 

- Initial document 

Version 1.1 

- Price subscription returns an array for both bid prices and ask prices to reflect the entire market 

depth. The previous bid and ask fields are now obsolete. 

- Price subscription now pushes delta updates, i.e. a snapshot is not sent on every update. Clients will 

need to process these updates to maintain a consistent state of prices. Each price (PriceQuantity 

message) now has an associated Id field to aid updates. 

- Added Trade Execution section to describe how multi-depth trades are handled. 

Version 1.2 

- PriceQuantity now includes a UpdateType to indicate whether the update for the price in question is 

added, updated or removed. It is expected that the API consumer would use PriceQuantity.id to 

correlate the price updates. When the UpdateType is removed, the price and quantity fields are not 

populated. 

Version 1.3 

- If a trade execution errors, more information is now returned describing the reason for the error. 

ExecutionResponse now has a Message field. 



4  
 

Version 1.4 

- The market segment attributes minimum trade quantity and quantity decimal places now belong to 

the market segment messages which are sent as part of the reference data messages. The same two 

attributes belonging to the PricesUpdate message are now marked as obsolete and should not be 

used anymore. 

Version 3.0 

- This version aligns all the existing changes occurred in the creation of ECT.  

- It also introduces functionality to place resting limit orders.  

- Note that as a major version change it breaks compatibility with older versions 

Version 3.1 

- Describing the new Good-Till-Session Behavior 

Version 3.4 

Some changes around orders 

- Including the counterparty code and order source to the price stream 

- UpsertOrderRequest Version parameter is optional for updates 

- UpsertOrder Contract Id and MarketArea Id are now int64 instead of int32 

- SuspendOrderRequest Version parameter is now optional and changed its type to string 

- ActivateOrderRequest Version parameter is now optional and changed its type to string 

- CancelOrderRequest Version is now gone and required the corresponding Product Instance Id 

- Minor API comment changes for better understanding 

Version 3.5 

- Instrument now has the TimeZone 

- Product Instance now has the Instrument Id 

- Product Instance name is now always the full display name on all objects 

- UpsertOrderRequest contract id has now been changed to the generic name bookId 

- OrderResponse now also sends the OrderId back, useful on Order Upserts 

- Improvements on code comments for some properties 

- Including in this document some basic steps gathering the most important data required for 

Upserting Orders 

- Changes in behaviour for OrderCommandResponse 

o We always now return an OrderId when possible 

o We always return an error inside the message property 

- Documentation tidy up from client’s feedback 

Version 3.6 

- Documentation cleanup 

Version 3.7 

- Alignment of dates, timestamp, delivery start and delivery end for trades, order and product 

instance all now follow the pattern yyyy-MM-ddTHH:mm:ss. Code comments in the proto file also 

reflect the change 



5  
 

Version 3.8 

- Rolled back delivery start/end dates back previous format 

Version 4.0 

- Extensive rework of API for new version.  See the comments in proto file for full details.   

- Version 3.8 of the API continues to be supported with unchanged semantics 

- Product Instance subscription is now separated from Price (renamed to Public Order) subscription 

- Type usage has been consolidated: for example a lot of fields that were strings are now numeric 

types 

Version 4.1 

- Introduction of Request for Quotes (RFQs) 

Version 4.2 

- RFQs: A quote can now be requested in one of the currencies supported by the instrument; 

renaming of RFQ messages. 

Version 4.3 

- Reference Data: Added a new collection of Market Area ids to Instrument named 

OrderMarketAreaIds.  This should now be used to select a market area id for order submission, 

instead of the existing MarketAreaIds collection.  The MarketAreaIds collection should be used to 

select a market area id for RFQ submission.  

Version 4.4 

- Trade Message: A trade can now have multiple pairs of product instances and quantities (quantity 

flow) required for profile RFQs. 

Version 4.5 

- Market segments are no longer part of the reference data; orders no longer have to be upserted 

with market segment id. 

Version 4.6 

- To support new products for RFQ and continuous trading, a new entity called ProductDefinition has 

been introduced. It is meant to replace Instrument, so comprises all its properties plus new ones to 

have a richer product definition available. 

   



6  
 

2 INTRODUCTION 

 

This document describes the AMPQ API which the Easy Commodity Trader server (herein referred to as ECT) 

exposes to external applications (herein referred to as client). 

The API allows clients to subscribe to live pricing streams, trades to be executed and historical trade 

information to be requested. 

The communication between client and server relies on the Advanced Message Queuing Protocol (AMQP) as 

a platform independent transport layer. ECT uses the RabbitMQ message broker which implement version 0-

9-1 of the AMQP protocol. https://www.rabbitmq.com/tutorials/amqp-concepts.html. There are clients 

available for all major languages. 

The messaged are encoded using google protocol buffer version 3 (referred to as ProtoBuf), see here 

https://developers.google.com/protocol-buffers/ for details. There is a .proto available that defines each 

message type. There are official implementations available in many languages including Java and C#. 

The examples provided in the document will be in C# and are included for illustrative purposes only.  

There are RabbitMQ and ProtoBuf libraries for many languages including but not limited to Java, Python, C++ 

and Go.

https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://developers.google.com/protocol-buffers/


7  
 

. 

3 QUICK START 

The following section provides a quick step by step description of how to establish a connection between an 

external application and ECT via AMQP. 

1. Connect to the RabbitMQ broker using the broker credentials and/or certificate provided. Note here: 

the credentials are not the ECT user name and password, but the broker ones. 

2. After a successful connection, the client should create and subscribe to a non-durable, exclusive, 

autodelete queue with a generated name. 

3. Publish a LoginRequest with the ECT credentials provided during onboarding to the ECT.Request 

exchange, with an empty routing key. 

4. If the login is successful, the client will receive a message with the matching correlation ID and 

LoginResponse as the Type. The deserialized payload will contain parameters for setting up 

heartbeats and the routing key that should be used for subsequent request messages. 

5. Publish KeepAlive messages to the ECT.Request exchange, with the routing key specified in the 

LoginResponse message. It should do this every keepAliveIntervalSeconds seconds and should 

expect to receive at least one message (of any type) from ECT in that time. If no messages are 

received as part of normal operation, the server will send a KeepAlive message. 

Note: when the client publishes a message to the ECT.Request exchange it should always include the 

following basic properties:  

• ReplyTo: set to the queue name 

• CorrelationId: set to a unique string 

• Type: set to the type of the message as a string 

If using version 4 or later of the API then the message should also include a header “Version” containing 

the major version as an integer.  If this is not set the service will assume that the client is using version 3. 

  



8  
 

4 USING THE API 

During the onboarding process, you will be provided with a hostname, a port number, a virtual host, a set of 

credentials and a client certificate for connecting to RabbitMQ and another set of credentials for connecting 

to ECT. 

4.1 GENERATING PROTOBUF CONTRACTS 
There are tools to generate classes from .proto files. 

Have a look at the ProtoBuf tutorials for your language of choice https://developers.google.com/protocol-

buffers/docs/tutorials to find out more. 

4.2 CONNECTING TO ECT MESSAGE BROKER 
The communication between Trading API clients and ECT is a brokered one, utilizing AMQP via RabbitMQ 

broker. To successfully connect to the message broker, the following requirements must be met: 

- Connection must be encrypted using TLS 1.2, trusting ECT wild card certificate derived from: 

o DigiCert Global Root G2 root certificate, which can be obtained from the website: 

https://www.digicert.com/digicert-root-certificates.htm 

- Certificate revocation list must be reachable 

- Using AMQP version 0-9-1 

- Outbound traffic to broker nodes on TCP port 5671 must be allowed 

- ECT uses IP whitelisting for inbound traffic - the client must provide their IP addresses to ECT IT  

The following endpoints are provided by ECT: 

- Production: 

o node1-api.ect.energy (52.29.229.60) 

o node2-api.ect.energy (52.29.231.157) 
- Demo/Integration: 

o node1-api-demo.ect.energy (35.157.46.17) 

o node2-api-demo.ect.energy (35.157.59.236) 

The virtual host provided through the Ect message broker is: 

- /ect2 

The credentials for logging successfully into the message broker are as following: 

- Username: <Provided by ECT Support when requesting Trading API access> 

- Password: <Provided by ECT Support when requesting Trading API access> 

 

 

 

Note: The credentials used to log into the message broker’s virtual host are completely different from the 

ones used to establish an ECT Trading API session (see Chapter 4.3). They are broker specific and ECT core 

system does neither evaluate nor know them. 

https://developers.google.com/protocol-buffers/docs/tutorials
https://developers.google.com/protocol-buffers/docs/tutorials
https://www.digicert.com/digicert-root-certificates.htm


9  
 

Example (C#): 

Start by configuring the connection factory. 

var connectionFactory = new ConnectionFactory 
{ 
    HostName = config.HostName, 
    Port = config.Port, 
    UserName = config.Username, 
    Password = config.Password, 
    VirtualHost = config.VirtualHost, 
    Ssl = new SslOption 
    { 
        Enabled = true, 
        ServerName = config.HostName, 
        Version = SslProtocols.Tls12, 
    }, 
}; 

 

At this point you should be able to open a connection and create a channel. 

var connection = connectionFactory.CreateConnection(); 
var model = connection.CreateModel(); 

 

You should now be able to connect to RabbitMQ. Next, set up the queue which will receive responses from 

ECT. The following code will create a queue that can only be accessed by the current connection. 

var queueName = _model.QueueDeclare().QueueName; 
 

You should create a consumer for this queue to pick up incoming messages. 

var consumer = new EventingBasicConsumer(model); 
model.BasicConsume(queueName, true, consumer); 
consumer.Received += QueueOnReceived; 

 

4.3 LOGGING INTO ECT 
After having successfully connected to the ECT message broker, the next step is to establish an ECT session 

itself. 

This is done by sending a LoginRequest message. The credentials to use are the ones, send out via email and 

are different from the broker ones (see previous chapter). 

 

Logging into ECT involves sending a LoginRequest message to the ECT.Request exchange with an empty 

routing key. The ReplyTo field should be set to the name of the client queue created earlier. ReplyTo, Type 

and CorrelationId should always be provided when sending requests to ECT to uniquely identify and 

correlate requests their respective responses on client side. 

If using version 4 or later of the API then the message should also include a “Version” header, illustrated 

below: 

Note: The ECT trading API user’s password has an expiration period of one year after creation. Also, the 

password expires ‘silently’ which means, that there is no notification mechanism in place informing about a 

looming password or session expiration! 



10  
 

var loginRequest = new LoginRequest 
{ 
    UserName = «<ect user name>”, 
    Password = “<ect password>” 
}; 
 
var basicProperties = model.CreateBasicProperties(); 
basicProperties.ReplyTo = queueName; 
basicProperties.Type = nameof(LoginRequest); 
basicProperties.CorrelationId = Guid.NewGuid().ToString(); 
basicProperties.Headers = new Dictionary<string, object> {{"Version", 4}}; 
 
model.BasicPublish( 
    exchange: "ECT.Request", 
    routingKey: "", 
    basicProperties: basicProperties, 
    body: loginRequest.ToByteArray()); 

 

If the credentials are correct, ECT will send a message back to the client queue. The response will contain a 

routing key that should be set for all subsequent requests, as it is identifying the session – without it, 

messages cannot correctly corelated to the client’s session and therefore will be dropped silently. It will also 

contain some parameters for sending and receiving heartbeats. 

4.4 SESSION TIME-OUT AND SENDING KEEPALIVES 
By successfully logging into ECT via trading API, a dedicated session has been created on ECT side for the 

connected client. The session has an expiration timer attached which automatically expires, if no message of 

any type has been received from the client for a period of: 

LoginResponse.keepAliveIntervalSeconds x LoginResponse.disconnectAfterMissedKeepAlives 

seconds. Any message received from the client will reset this timer. To avoid session expiration, the trading 

API client should regularly send messages to ECT, e.g. by KeepAlive. 

The ECT service also sends messages to the client on a regular basis: if no message of any type has been sent 

to the client within a period of LoginResponse.keepAliveIntervalSeconds seconds, a dedicated KeepAlive 

message will be send. 

Thus, a client should consider an active session to be timed-out, if he did not receive any type of message 

since a period of: 

LoginResponse.keepAliveIntervalSeconds x LoginResponse.disconnectAfterMissedKeepAlives 

seconds. If the client detects a timed-out session, it does not need to send a dedicated 

DisconnectionRequest, but can directly start over with a new LoginRequest as pointed out in the previous 

chapter. 

Example code (C#): 



11  
 

var timer = new Timer(_ => 
{ 
    var keepAlive = new KeepAlive(); 
 
    var basicProperties = model.CreateBasicProperties(); 
    basicProperties.ReplyTo = _queueName; 
    basicProperties.Type = nameof(KeepAlive); 
    basicProperties.CorrelationId = Guid.NewGuid().ToString(); 
    basicProperties.Headers = new Dictionary<string, object> { { "Version", 4 } }; 
 
    model.BasicPublish( 
        exchange: "ECT.Request", 
        routingKey: RoutingKey, 
        basicProperties: basicProperties, 
        body: keepAlive.ToByteArray()); 
}); 
 
timer.Change(0, response.KeepAliveIntervalSeconds * 1000); 

 

The picture below illustrates the session expiration of ECT: 



12  
 

 

Figure 1: ECT session handling 



13  
 

4.5 SESSION DUPLICATION 
Currently, there is no support for duplicated sessions in ECT. A duplicated session is a session sharing the 

same ECT credentials (username and password). 

If any client established a valid session and a second client logs into ECT using the very same credentials, the 

first session will be terminated with DisconnectionResponse message having a DisconnectionReason. 

DC_DUPLICATE_SESSION value set. 

4.6 GOOD TILL SESSION ORDER LIFECYLE 
Trading API users’ order lifecycle differs from that of Trading Ui users. All pending orders will be cancelled as 

soon as the session is closed either intentionally as a normal logout or forced (users permissions change or 

deactivation). 

5 USING THE TRADING API 

5.1 OPERATIONAL MODES 
ECT has two operational modes: 

1. Request/Response 

2. Subsbriptions 

5.2 REQUEST/RESPONSE 
Some data and functionality can only be used through Request/Response messages. Each request message 

send to ECT must have a valid routing key set (see also section 4.3). All request messages not having a valid 

routing key, will be silently dismissed. 

If any Request message contains a client set Correlation ID in the message header, each Response message 

generate by ECT will also have the very same Correlation ID set in its message header. 

The following Request and correlated Response messages are available in the Trading API (see also the 

attached ‘.proto’ file): 

Request Type Response Type 

LoginRequest LoginResponse 

DisconnectionRequest DisconnectionResponse 

ReferenceDataRequest ReferenceDataResponse 

ProductInstancesSubscriptionRequest ProductInstanceSubscriptionResponse 

ProductInstancesUnsubscriptionRequest ProductInstanceUnsubscriptionResponse 

PublicOrdersSubscriptionRequest PublicOrdersSubscriptionResponse 

PublicOrdersUnsubscriptionRequest PublicOrdersUnsubscriptionResponse 

TradesSubscriptionRequest TradesSubscriptionResponse 

TradesUnsubscriptionRequest TradesUnsubscriptionResponse 

OrdersSubscriptionRequest OrdersSubscriptionResponse 

OrdersUnsubscriptionRequest OrdersUnsubscriptionResponse 

RfqsSubscriptionRequest RfqsSubscriptionResponse 

RfqsUnsubscriptionRequest RfqsUnsubscriptionResponse 

GetTradesRequest GetTradesResponse 

UpsertOrderRequest OrderCommandResponse 



14  
 

CancelOrderRequest OrderCommandResponse 

WithdrawOrderRequest OrderCommandResponse 

ActivateOrderRequest OrderCommandResponse 

InsertRfqRequest RfqCommandResponse 

TradeRfqRequest RfqCommandResponse 

CancelRfqRequest RfqCommandResponse 

SubmitRfqQuoteRequest RfqCommandResponse 

 

5.3 SUBSCRIPTIONS 
Subscriptions provide data by pushing them from the ECT server to the Trading API client, without having the 

client to send a dedicated Request message. 

ECT supports the following subscriptions:  

Request Type Response Type Update Type 

ProductInstancesSubscriptionReques
t 

ProductInstancesSubscriptionRespons
e 

ProductInstancesUpdat
e 

PublicOrdersSubscriptionRequest PublicOrdersSubscriptionResponse PublicOrdersUpdate 

OrdersSubscriptionRequest OrdersSubscriptionResponse OrdersUpdate 

RfqsSubscriptionRequest RfqsSubscriptionResponse RfqsUpdate 

TradesSubscriptionRequest TradesSubscriptionResponse TradesUpdate 

 

For each type only ONE subscription exists per client session. If multiple subscription requests have been 

submitted to ECT they all will be combined into one single subscription of the respective type. This means 

especially, that any UnsubscribeRequest message send to ECT will stop ALL subscriptions for the specified 

subscription type: 



15  
 

 

Figure 2: ECT subscription aggregation 

5.3.1 Subscription Workflow 

Each subscription is started with a SubscriptionRequest message of the respective type. The subscription has 

been started only, if the corresponding SubscriptionResponse message contains no error (isError set to false). 

After the SubscriptionResponse message, ECT sends out a first Update message, having set the 

isStateOfTheWorld property to true. This Update message is said to contain the State-Of-The-World 

snapshot (hereafter called SOTW). The SOTW contains all entities at the current point in time, when the 

subscription has been started. Also, only entities for which the party has privileges are available through the 

subscription. 

After the initial SOTW snapshot has been sent to the client, only delta Update messages, containing all 

changed entities since the last Update, will be send to the client. Delta Update messages have the 

isStateOfTheWorld property set to false.  

The client must treat any SOTW Update message for an active subscription as reset: all data received before 

the SOTW Update must be considered invalid and only the new SOTW represents the current subscription. 

Normally, only one SOTW message will be send per subscription. But in case of subscription aggregation (see 

chapter 5.3), additional SOTW messages will be received for an active subscription: 



16  
 

 

Figure 3: ECT subscription workflow 



17  
 

6 WORKING WITH DATA 

ECT Trading API provides different kinds of data: 

1. Static Data 

2. Reference data 

3. Subscription data 

6.1 STATIC DATA 
Static data is provided in as enumerations. Changes to an enumeration will result in an update of the Trading 

API version. With that, changes will be communicated to clients explicitly. 

6.2 REFERENCE DATA 
Reference data in ECT is used to describe the basic properties for tradable products. The difference between 

Static and Reference data is, that reference data can be enhanced without changing the Trading API version 

(e.g. by adding a new currency, which is just a new entry in the Currencies collection). 

Further, all reference data is scoped: 

• Global: this data is available to all ECT parties/users 

• Own Party: this data is only available to users of the same party the user account used by the 

Trading API client. 

Reference data can only be obtained through Request/Response messages, pushing of updates to reference 

data items is not available. 

The following table describes the available properties of RequestDataResponce message in more detail: 

Property Type Scope Description 

periodTypes PeriodType 
collection 

Global Contains all period types used in ECT. 
A single period type could be: Hour, Month, … 

commodities Commodity 
collectuon 

Global Contains all commodities available in ECT. 
A single commodity could be: Power, Gas 

currencies Currency 
collection 

Global Contains all currencies available in ECT. 
A single currency could be: EUR, CZK 

productTypest ProductType 
collection 

Global Contains all product types in ECT. 
A single value could be: Fix, Index, Swap 

quantityUnits QuantityUnit 
collection 

Global Contains all quantity units available in ECT. 
A single value could be: MW 

books Book collection Own Party Contains all contract agreements or portfolios 
(unified under term Book) available for the ECT 
party. 

marketAreas MarketArea 
collection 

Own Party Contains all market areas used by at least one 
product definition setup for the ECT party. 
A single value could be: Amprion, TTF, OTE, … 

indices Index collection Own Party Contains all indices used by at least one 
product definition setup for the ECT party. 
A single value could be: None, LEBA NCG DA 
CZK 



18  
 

Note: if a product does not use an index (e.g. 
fix price product) the index is always set to 
‘None’ 

strategies Strategy 
collection 

Own Party Contains all strategy names available for the 
ECT party. 

productDefinitions ProductDefinition 
collection 

Own Party Contains all product definitions available for 
the ECT party. 
A product definition (sometimes called a 
contract) defines the basic properties of a 
tradable product instance (the What, Where, 
How) 

 

 Reference data describes the concrete products which are available to the Trading API client. Only products 

which have been setup and permissioned to the party the user account belongs to, are This example usage 

sequence demonstrates the relationship between the information retrieved from the API and the fields in 

the UpsertOrderRequest 

Most of the reference data types comprise only two properties: 

Property Type Description 

id Int64 A unique ID within the type. Used for reference purpose from 
other entities/items. 

name String The concrete name of the object 

This applies to types PeriodType, Commodity, Currency, ProductType, QuantityUnit, Book, MarketArea, Index. 

ProductDefinition is more complex: 

Property Type Description 

id Int64 A unique ID within the type. Used for reference purpose from 
other entities/items. 

name String The concrete name of the object. 
e.g. Power Dutch Intraday-Hour 

commodityId Int64 References the underlying commodity of this object. 

defaultCurrencyId Int64 References the default currency in which prices are quoted. 

additionalCurrencyIds Int64 collection Contains all additional currencies in which prices could be 
submitted or provided – if no additional currencies are 
supported, this collection is empty. The currency referenced 
in defaultCurrencyId is never part of this collection. 

quantityUnitId Int64 References the quantity unit in which quantities of the 
underlying commodity are provided or submitted. 

periodTypeId Int64 References the period type in which delivery periods of 
product instances referencing this object, are provided. 
e.g. Hour, Month 

deliveryType DeliveryType 
enum 

An enum value defining how trades, done on product 
instances referencing this object, are settled. 
e.g. DT_PHYSICAL, DT_FINANCIAL 

productTypeId Int64 References the product type which defines the nature of this 
object. The following values are possible: 

• Fix: trades done are settled with a fix price derived 
directly from the trade 

Hint: Although all entities provided through Trading API have numeric IDs, it is not recommended to rely on 

the ID (e.g. for mapping purposes). Reason is, that IDs are not equal over the different ECT environments 

(Production/Demo/Integration/…). Also, there is no common scheme, how entities obtain their ID. For 

mapping purposes, clients should rather use names. 



19  
 

• Index: trades done are settled with floating price 
derived from the settlement price of the product 
definition’s index 

• Swap (Fix vs. Index): trades done are settled with 
floating price derived from the settlement price of 
the product definition’s index and the fix price of the 
trade 

indexId Int64 References the index used for price calculation – if no index is 
used for price calculation (e.g. Fix) the well-known index 
‘None’ is referenced. 

marketAreas Int64 collection References the market area used for (virtual) delivery or off-
take of the underlying commodity. 

timeZone String time zone name as provided by TZDB (aka IANA time zone 
data - https://www.iana.org/time-zones) in which delivery 
start and end of product instances referencing this object will 
be expressed. 

minPriceStep Double minimum step in which prices can be submitted, e.g. 0.01 - 
also used to define the maximum number of allowed price 
decimals: 
0.1 => 1 decimal 
0.01 => 2 decimals 

minQuantityStep Double minimum step in which quantity values can be submitted, 
e.g. 0.01 - also used to define the maximum number of 
allowed quantity decimals 
0.1 => 1 decimal 
0.01 => 2 decimals 

  

https://www.iana.org/time-zones


20  
 

6.3 SUBSCRIPTION DATA 
As described in section 5.3, some data is available through subscriptions: 

1. Product Instances 

2. Public Orders 

3. Private Orders (Party Owned) 

4. Trades (Party Owned) 

5. RFQs (Party Owned) 

6.3.1 Product instances 

Product instances represent concrete products. Depending on the setup, some product instances have an 

orderbook associated. If so and assuming the client has privileges to do so, it can submit orders into the 

orderbook of the product instance. 

If a product instance does not have an orderbook associated, it still might be used in RFQ submission. 

As all commands for public and private orders as well as RFQs need a product instance ID, a subscription to 

this type is vital for a Trading API client. 

To start or expand a product instance subscription, the Trading API client should submit a 

ProductInstancesSubscriptionRequest message containing ProductInstanceSubscriptionParams which define 

the concrete product definitions for which all available product instances are to be retrieved (see also 

section 5.3). 

The following table describes the ProductInstance type in detail: 

Property Type Description 

updateType UpdateType enum Defines the kind of change for this product instance: 

• UT_ADDED: the instance has been added (mostly 
due to new creation) 

• UT_UPDATED: an existing instance has been updated 

• UT_REMOVED: an existing instance has been 
removed (mostly due to expiry) 

If the message is a SOTW one, then this value is always 
UT_ADDED. 

id Int64 A unique ID within the type. Used for reference purpose 
from other entities/items. 

name String The concrete name of the object. 
e.g. GAS GPL HIGH - DA 

displayName String Short name of the product instance, mostly used for 
displaying purpose. 
e.g. DA, H14 

deliveryStart DateTimeOffset A timestamp when the (virtual) delivery of the underlying’s 
commodity will start. This is an inclusive boundary. 
The timestamp is expressed as local time with offset in the 
time zone of the referenced product definition. 

deliveryEnd DateTimeOffset A timestamp when the (virtual) delivery of the underlying’s 
commodity will end. This is an exclusive boundary. 
The timestamp is expressed as local time with offset in the 
time zone of the referenced product definition. 



21  
 

tradingEnd DateTimeOffset Time at which the product instance's orderbook will be 
closed for continuous trading and at which all orders will be 
evicted. 
Also, after the orderbook has been closed, submission of 
new orders will not be possible any more. 

durationInHours Double The number of total hours in which a (virtual) delivery 
happens, e.g.: 
0.25 => quarter hour 
23 => 23 hours on daylight savings days 

permissionsByBook PermissionsByBook Defines the permissions a Trading API client has on the 
product instance (e.g. buy or sell through specific contract 
agreement, instant vs. limit order, …) 

productDefinitionId Int64 References the ProductDefinition object defining the basic 
product properties. 

 

Each product instance has two periods assigned: Trading period and Lifetime period. 

The lifetime period defines, from when to when a product instance exists in general. Once the lifetime is 

exceeded the product instance is said to have expired. After it has expired, it will be removed from ECT. 

The trading period defines, from when to when a product instance has an orderbook attached and thus 

orders could be setup. As soon as the trading period expires, the attached orderbook will be expired as well. 

All standing orders at the time of orderbook expiration will be expired as well. The order expiration will be 

pushed to the client through an existing private order subscription. Normally, the trading period ends 

BEFORE the lifetime, resulting in a gap, in which the product instance exists but cannot be traded anymore. 

There are some product instances, which do not have a trading period at all. These ones are mainly meant 

for setting up RFQs. 

At this point, there is no way to determine explicitly from ProductInstance fields, whether an orderbook is 

attached or not. Only the OrderCommandResponse to a sent OrderRequest command will provide this detail 

in form of the CommandResult code CR_FAILED_DUE_TO_MISSING_ORDER_BOOK. 



22  
 

 

Figure 4: ECT Product Instance update and expiry 

Some product instances have also a varying delivery start. E.g. all product instance for Gas Balance-Of-Week 

have a delivery start depending on the current point in time: as time passes, the delivery start gets adjusted 

until it is not possible any more and eventually the product instance will expire (removed). Each change of 

the delivery start will also be announced by a ProductInstanceUpdate message. 

6.3.2 Public Orders 

Public orders are orders available to all ECT clients, independently of the party. Through the public order 

subscription, it is possible for a client to retrieve a complete orderbook for a specific product instance. 

To start or expand a public order subscription, the Trading API client should submit a 

ProductInstancesSubscriptionRequest message containing ProductInstanceSubscriptionParams which define 

the concrete product instances for which public orders are to be retrieved (see also section 5.3). 

As by nature all clients could see all public orders, they only contain a basic set of data, to not disclose 

sensitive client information to other parties. 

The following table describes the PublicOrderUpdate type in detail: 

Property Type Description 

updateType UpdateType enum Defines the kind of change for the whole orderbook of the 
product instance: 



23  
 

• UT_ADDED: the product instance and orderbook 
have been added (e.g. subscription start or new 
creation of product instance) 

• UT_UPDATED: existing product instance’s orderbook 
has been updated (e.g. single order has been added, 
removed or changed) 

• UT_REMOVED: existing product instance and 
associated orderbook have been removed (e.g. after 
expiration or change of permissions) 

If the message is a SOTW one, then this value is always 
UT_ADDED. 

productInstanceId Int64 The product instance associated to the affected orderbook. 

bidUpdates PublicOrder 
collection 

Contains all bid orders affected by this update. 

askUpdates PublicOrder 
collection 

Contains all ask orders affected by this update. 

 

The following table describes the PublicOrder type in detail: 

Property Type Description 

updateType UpdateType enum Defines the kind of change for the order: 

• UT_ADDED: the order has been added (e.g. 
subscription start or new creation) 

• UT_UPDATED: existing order has been updated (e.g. 
if the owner changed the price or the order has been 
partially executed) 

• UT_REMOVED: existing order has been removed (e.g. 
after expiration or cancellation) 

If the message is a SOTW one, then this value is always 
UT_ADDED. 

orderId Int64 A unique ID of the order within ECT. 

price Double The price of the order expressed in the default currency of 
the product instance’s product definition. 

quantity Double The quantity of the order expressed in the quantity unit as 
set in the product instance’s product definition. 

counterpartyCode String The short name of the party owning this order. 

orderSource OrderSource enum Provides details about the order’s owner: 

• OS_MINE: the order has been created by the Trading 
API user. 

• OS_MY_PARTY: the order has been created by a 
different user of the same party as the Trading API 
user belongs to. 

• OS_OTHER: any other order (not from the Trading 
API client’s party) 

6.3.3 Private Orders 

Private orders are all orders owned by the party, the current Trading API user belongs to. So, these are 

especially the same orders as received through the public order subscription with orderSource set to 

OS_MINE or OS_MY_PARTY. In contrast to a public order, a private one contains more properties. Also, the 

private orders are not provided as part of orderbooks but as a single continuous stream. 



24  
 

Further there is no UpdateType field available to describe whether an order has been added, changed or 

removed. Instead this must be derived from a different field: orderStatus. 

To start or expand a private order subscription, the Trading API client should submit a 

ProductInstancesSubscriptionRequest message containing ProductInstanceSubscriptionParams which define 

the concrete product instances for which public orders are to be retrieved (see also section 5.3). 

The following table describes the private Order type in detail: 

Property Type Description 

orderId Int64 A unique ID of the order within ECT. 

version Int32 The current version of the order - each change to any of the 
order's fields will increase the version value. 
Any operation on orders is only possible if the correct version 
is provided in Request messages send to ECT. 
This is to ensure multiple requests do not change orders in an 
unintended way (concurrency protection). 
Also note: if an order has been published on the subscription 
with version 0 (zero), it means the order has been created; 
any version value greater than 0 is an update or removal. 

status OrderStatus enum Current status of the order: 

• OS_ACTIVE: the order is waiting in the orderbook to 
be matched 

• OS_DONE: the order has been removed from the 
orderbook and has been partially or fully executed 

• OS_REJECTED: The order has not been added to the 
orderbook as pre-checks failed 

• OS_SUSPENDED: the order is in the orderbook, but 
inactive and thus will not be used for matching 

• OS_CANCELLED_BY_USER: the order has been 
removed from the orderbook as it was cancelled by a 
user 

• OS_CANCELLED_BY_SYSTEM: order has been 
removed from the orderbook by system (e.g. 
permission change) 

• OS_EXPIRED: the order has been removed as the 
orderbook ceased to exist due to product instance 
expiration 

• OS_FAILED: the order has been removed from the 
orderbook and has not been (partially) executed at 
all 

orderType OrderType enum Type of the order: 

• OT_FOK: Fill-Or-Kill - the order should be executed 
immediately upon adding it to the orderbook AND 
only with full quantity (no partial execution); if not 
possible, remove it immediately from the orderbook. 

• OT_GTC: Good-Till-Cancel - the order is set up as limit 
order, resting in the orderbook until it gets fully 
matched, cancelled, or if created by a Trading API 
client, the session terminates. Partial execution is 
allowed and will reduce the remaining quantity only. 



25  
 

• OT_IOC: Immediate-Or-Cancel - the order should be 
executed immediately upon adding it to the 
orderbook. In contrast to Fill-Or-Kill, partial execution 
is allowed; The remaining (partial) order should be 
cancelled immediately after the matching process. 

• OT_AON: All-Or-Nothing - the order is set up as limit 
order, resting in the orderbook until it gets fully 
matched, cancelled, or if created by a Trading API 
client, the session terminates. In contrast to Good-
Till-Cancel, partial execution is NOT allowed. 

clientDirection Direction enum The order direction from the client’s POV: 

• DIR_BUY: The client wants to buy the underlying 

• DIR_SELL: the client wants to sell the underlying 

productInstanceId Int64 References the product instance, which’s orderbook contains 
the order. 

price Double The price of the order expressed in the default currency of 
the product instance’s product definition. 

quantity Double The quantity of the order expressed in the quantity unit as 
set in the product instance’s product definition. 

filledQuantity Double Contains the already executed quantity in case of partial 
execution. 

remainingQuantity Double Contains the remaining quantity in case of partial execution. 
If not executed yet, this value is equal to quantity. 

totalVolume Double Contains the total volume, if the order would be fully 
executed. It takes schedules (Base, Peak, Atomic) into 
account. 

marketAreaId Int64 References the market area of the (virtual) delivery or take-
off. 

bookId Int64 References the contract agreement or portfolio into which 
trades, resulting from this order, will be booked. 

timeStamp DateTimeOffset The time stamp of when the order was created in ECT. 

trader String Full name of the user, who owns(created) the order. 

clientCorrelationId String An optional ID set by the client. This value can be used to 
track the order on client systems with an own ID. 
It is only visible to users of the same party. 

comment String An optional comment set by the client. 
It is only visible to users of the same party. 

strategy String An optional value set by the client. 
It is only visible to users of the same party. 

6.3.1 Trades 

The trades subscription is very much like the private orders one: only trades are published, which were 

concluded on orders of the party the Trading API client belongs to. 

The following table describes the Trade type in detail: 

Property Type Description 

id Int64 A unique ID of the trade within ECT. 

party String The full name of the counterparty from the client’s party 
POV. 

timeStamp DateTimeOffset The time stamp of when the trade  was created in ECT. 



26  
 

privateOrderId Int64 If the trade has been concluded over an order, this value 
is the unique ID of the order (see also Order.orderID). 
If the trade has been concluded over an RFQ, this value is 
0 (zero). 

rfqId Int64 If the trade has been concluded over an order, this value 
is 0 (zero). 
If the trade has been concluded over an RFQ, this value is 
the unique ID of the RFQ (see also Rfq.rfqID). 

clientDirection Direction enum The order direction from the client’s POV: 

• DIR_BUY: The client buys the underlying 

• DIR_SELL: the client sells the underlying 

price Double The price of the trade expressed in the provided 
currency. 

currency String The ISO-4217 code of the currency in which price is 
provided 

quantityFlow TradeQuantityFlowItem 
collection 

A collection of TradeQuantityFlowItem items 
representing the different leg flows. 

quantityUnit String The unit of measurement in which the quantity of each is 
TradeQuantityFlowItem expressed. 
(e.g. MW) 

marketArea String Name of the market area of the (virtual) delivery or take-
off. 

book String The name of the contract agreement or portfolio into 
which the trade has been booked. 

trader String The full name of the trader who concluded the trade. 
This field is always filled from POV of the Trading API 
client – so only the trader of the own party is shown 
here. 

confirmationID String Contains the confirmation ID of the trade store used by 
ECT. This value is only provided in case of a RFQ trade. 
Also note: the trade life cycle is implemented in a way, 
that the trade is published BEFORE the confirmation ID of 
the underlying trade store has been received. As soon as 
the confirmation ID has been received, another Trade 
message will be published, having this field set to the 
received value. 

clientCorrelationId String An optional ID set by the client. This value can be used to 
track the order or RFQ on client systems with an own ID. 
It is only visible to users of the same party. 

comment String The optional comment set by the client on the order or 
RFQ. It is only visible to users of the same party. 

strategy String The optional value set by the client on the order or RFQ. 
It is only visible to users of the same party. 

The following table describes the TradeQuantityFlowItem type in detail: 

Hint: Unlike Order, Trade does not have a version or an updateType field. This makes it harder to track 

changes. At best, the Trading API client tracks on its side the trades of interest and checks each Trade 

message for an already pushed trade ID – if a message with the same ID.had been pushed before, it is an 

update. 



27  
 

Property Type Description 

productInstanceName String The name of the product instance, for which this 
(virtual) quantity flow is designated. 

deliveryStart DateTimeOffset A timestamp when the (virtual) delivery of the quantity 
flow will start. This is an inclusive boundary. 
The timestamp is expressed as local time with offset in 
the time zone of the referenced product definition. 

deliveryEnd DateTimeOffset A timestamp when the (virtual) delivery of the quantity 
flow will end. This is an exclusive boundary. 
The timestamp is expressed as local time with offset in 
the time zone of the referenced product definition. 

quantity Double The quantity expressed in unit of measurement defined 
in Trade.quantityUnit. 

6.3.1 RFQs 

The Rfq subscription is very much like the private orders one: only Rfqs, which are submitted by the party of 

the Trading API client, are pushed through. As the Order type, Rfq has a version field, which is used to 

indicate changes on a Rfq. Further, version is used as protection against unintended concurrent change. 

The following table describes the private Rfq type in detail: 

Property Type Description 

rfqId Int64 A unique ID of the RFQ within ECT. 

version Int32 The current version of the RFQ - each change to any of 
the order's fields will increase the version value. 
Any operation on RFQs is only possible if the correct 
version is provided in Request messages send to ECT. 
This is to ensure multiple requests do not change RFQs 
in an unintended way (concurrency protection). 
Also note: if a RFQ has been published on the 
subscription with version 0 (zero), it means the RFQ 
has been created; any version greater than 0 is an 
update or removal. 

status RfqStatus enum Current status of the RtFQ: 

• RS_SUBMITTED: the RFQ has been submitted 
and awaits quotation. 

• RS_QUOTED: the RFQ has been quoted and 
awaits acceptance. 

• RS_EXPIRED: the RFQ was quoted but the 
client did not accept nor cancel and thus after 
specified time the RFQ has been cancelled by 
the system. 

• RS_TRADED: the RFQ was quoted and the 
client accepted the quote. 

• RS_CANCELLED: the RFQ has been cancelled by 
either system or user. 

direction Direction enum The RFQ direction from the client’s POV: 

• DIR_BUY: The client wants to buy the 
underlying 

• DIR_SELL: the client wants to sell the 
underlying 



28  
 

requester RfqTradingParty Describes the submitting party (of the user who 
submitted the RFQ and waits for quotation) 

quoter RfqTradingParty Describes the quoting party (of the user who generates 
the quote for the submitted RFQ) 

marketAreaId Int64 References the market area of the (virtual) delivery or 
take-off. 

quantityFlow QuantityFlowItem 
collection 

A collection of QuantityFlowItem items representing 
the different leg flows. 

isScheduled Bool This field is set to true, if the RFQ should be quoted at 
the specified scheduledTime; otherwise, the field is 
false. 

scheduledTime DateTimeOffset Only used if isScheduled is set to true: The timestamp 
at which the quote should be submitted. 

quoteExpiryTimestamp DateTimeOffset Only available, if a quote has been provided (see status 
RS_QUOTED): the timestamp at which the RFQ will 
automatically been cancelled, if the quote has not 
been accepted by the submitting client. 

quote Double Only available, if a quote has been provided (see status 
RS_QUOTED): 
the quoted price referring to a single volume unit, 
provided by the RFQ quoter (e.g. in EUR per 1MWh, if 
currency is EUR and quantity unit MW). 
Depending on the underlying product type, this value 
could either be a fix price, or an add-on added to a 
price being available only at a later point in time (e.g. 
after index settlement) 

currencyId Int64 References the Currency, in which the quoted price is 
provided. 

quoteComment String A public comment field, which is visible to both parties. 
Its content can only be set by quoter, not requester. 

terminatedReason TerminatedReason Specifies the reason of the RFQ termination (see enum 
TerminatedReason): 

• TR_NONE: the default state, as long as the RFQ 
has not been terminated. 

• TR_PRODUCT_INSTANCE_EXPIRED: the RFQ 
has been expired, before any quote has been 
provided. 

• TR_QUOTE_EXPIRED: the RFQ has been 
expired after a quote was provided but before 
it was accepted. 

• TR_REQUESTER_CANCELLED: the RFQ has 
been actively been cancelled by the submitting 
party. 

• TR_QUOTER_CANCELLED: the RFQ has been 
cancelled by the quoting party. 

• TR_SYSTEM_CANCELLED: the RFQ has been 
cancelled by ECT because of technical errors. 

 

The following table describes the RfqTradingParty type in detail: 



29  
 

Property Type Description 

party String The full name of the party which submitted the RFQ or 
provided the quote. 

trader String The full name of the trader who submitted the RFQ or 
the quote and thus belongs to party. 

book String The contract agreement or portfolio under which the 
RFQ has been submitted or the quote has been 
provided. 

clientCorrelationId String An optional ID set by the client. This value can be used 
to track the RFQ on client systems with an own ID. 
It is only visible to users of the same party. 

comment String An optional comment set by the client. 
It is only visible to users of the same party. 

strategy String An optional value set by the client. 
It is only visible to users of the same party. 

timestamp DateTimeOffset A timestamp at which either RFQ has been submitted or 
the quote was provided (depending on the party’s role)
  

 

The following table describes the QuantityFlowItem type in detail: 

Property Type Description 

productInstanceId Int64 The name of the product instance, for which this 
(virtual) quantity flow is designated. 

quantity Double The quantity expressed in unit of measurement defined 
in quantityUnit of the product definition referenced by 
the product instance. 

  



30  
 

6.4 ORDER MANAGEMENT 
This section describes how to setup an Order and manage its life cycle: 

 

Figure 5: ECT order life cycle management 

 

ECT Trading API has four different OrderRequest commands for managing the order life cycle: 

• UpsertOrderRequest: this is used to either create a new order or to update an existing one. 

• WithdrawOrderRequest: this is used, to suspend (aka withdraw, withheld) existing orders. If an order 

is suspended, it is still in the orderbook, but not available for matching any longer. 

• ActivateOrderRequest: this is used, to activate a suspended (aka withdrawn, withheld) order. As 

soon as the order is active, it will be used in the matching process again. 

• CancelOrderRequest: this is used to cancel an existing order. Once an order has been cancelled, it is 

removed completely from the orderbook. 



31  
 

The following table describes the UpsertOrderRequest fields: 

Property Type Description 

orderId Int64 If a new order should be created: set it to 0 (zero) 
If an existing order should be updated: set it to the 
order’s ID. 

version Int32 If a new order should be created: set it to 0 (zero) 
If an existing order should be updated: set it to the 
order’s current version. 
You can also set the version to zero in order to update 
an order without the API validating the version field. 

status OrderStatus enum If a new order should be created: set it to either 
OS_ACTIVE or OS_SUSPENDED to create it as active or 
suspended order. 
If an existing order should be updated: set it to the 
order’s current status, as it must not change. To 
suspend or reactivate, use the WithdrawOrderRequest 
and ActivateOrderRequest. 

bookId Int64 The ID of the portfolio or contract agreement the order 
should be put into. 
Read-only, once the order has been created. 

marketAreaId Int64 The ID of the market area at which the order’s (virtual) 
delivery should take place. 
Read-only, once the order has been created. 

productInstanceId Int64 The ID of the product instance into whose orderbook 
the order should be entered for matching. 
Read-only, once the order has been created. 

direction Direction enum The direction of the order from client POV: 

• DIR_BUY: The client wants to buy the underlying 

• DIR_SELL: The client wants to sell the underlying 
Read-only, once the order has been created. 

orderType OrderType enum Type of the order: 

• OT_FOK: Fill-Or-Kill - the order should be 
executed immediately upon adding it to the 
orderbook AND only with full quantity (no 
partial execution); if not possible, remove it 
immediately from the orderbook. 

• OT_GTC: Good-Till-Cancel - the order is set up 
as limit order, resting in the orderbook until it 
gets fully matched, cancelled, or if created by a 
Trading API client, the session terminates. 
Partial execution is allowed and will reduce the 
remaining quantity only. 

• OT_IOC: Immediate-Or-Cancel - the order 
should be executed immediately upon adding it 
to the orderbook. In contrast to Fill-Or-Kill, 
partial execution is allowed; The remaining 
(partial) order should be cancelled immediately 
after the matching process. 

• OT_AON: All-Or-Nothing - the order is set up as 
limit order, resting in the orderbook until it gets 



32  
 

fully matched, cancelled, or if created by a 
Trading API client, the session terminates. In 
contrast to Good-Till-Cancel, partial execution is 
NOT allowed. 

Read-only, once the order has been created. 

price Double The maximum price of the order. Depending on the 
orderType, the meaning is: 

• Limit order (resting): 
o DIR_BUY: The client wants to buy lower 

than or up to this price. 
o DIR_SELL: The client wants to sell higher 

than or equal to this price 

• Immediate execution (non-resting): 
o DIR_BUY: The client wants to buy lower 

than or up to this price. 
o DIR_SELL: The client wants to sell higher 

than or equal to this price 

quantity Double The quantity expressed in unit of measurement defined 
in quantityUnit of the product definition referenced by 
the product instance. 

clientCorrelationId String An optional ID set by the client. This value can be used 
to track the order on client systems with an own ID. 
It is only visible to users of the same party. 

comment String An optional comment set by the client. 
It is only visible to users of the same party. 

strategy String An optional value set by the client. 
It is only visible to users of the same party. 

 

The following table describes the WithdrawOrderRequest fields: 

Property Type Description 

orderId Int64 ID of an existing order to be suspended. If the order is 
already suspended, nothing will happen. 

version Int32 The current version of the order. 
If the version does not match the version on ECT side, 
the order was modified by someone else and the 
request will fail. 

 

The following table describes the ActivateOrderRequest fields: 

Property Type Description 

orderId Int64 ID of an existing order to be activated. If the order is 
already active, nothing will happen. 

version Int32 The current version of the order. 
If the version does not match the version on ECT side, 
the order was modified by someone else and the 
request will fail. 

 

The following table describes the CancelOrderRequest fields: 



33  
 

Property Type Description 

orderId Int64 ID of an existing order to be cancelled and removed. 

version Int32 The current version of the order. 
If the version does not match the version on ECT side, 
the order was modified by someone else and the 
request will fail. 

 

Each OrderRequest command, submitted from the client to ECT, will be acknowledged with an 

OrderCommandResponse from ECT. 

To correlate a submitted OrderRequest with its OrderCommandResponse, it is recommended to set the 

CorrelationID header field on the AMQP message. If the CorrelationID was set, ECT automatically sets the 

value on the OrderCommandResponse’s message header. 

The following table describes the OrderCommandResponse type in detail: 

Property Type Description 

result CommandResult 
enum 

Contains a return code expressing the success or failure of the 
submitted command: 

• CR_SUCCEEDED 

• CR_FAILED_DUE_TO_INTERNAL_SERVER_ERROR 

• CR_FAILED_DUE_TO_MISSING_ORDER 

• CR_FAILED_DUE_TO_MISSING_ORDER_BOOK 

• CR_FAILED_DUE_TO_ORDER_VERSION_MISMATCH 

• CR_FAILED_DUE_TO_MISSING_USER 

• CR_FAILED_DUE_TO_MISSING_BOOK 

• CR_FAILED_DUE_TO_MISSING_PRODUCT_INSTANCE 

• CR_FAILED_DUE_TO_MISSING_MARKET_AREA 

• CR_FAILED_DUE_TO_EXCEEDING_QUANTITY_LIMITS 

• CR_FAILED_DUE_TO_INVALID_QUANTITY 

• CR_FAILED_DUE_TO_EXCEEDING_TENOR_LIMITS 

• CR_FAILED_DUE_TO_MISSING_TENOR_LIMIT 

• CR_FAILED_DUE_TO_INVALID_PRICE 

• CR_FAILED_DUE_TO_MISSING_PERMISSION_TO_TRADE_ON
_BOOK 

• CR_FAILED_DUE_TO_MISSING_PERMISSION_TO_TRADE_PRO
DUCT_ORDER_TYPE_COMBINATION 

• CR_FAILED_DUE_TO_EXCEEDING_MAX_COMMENT_LENGTH 

• CR_FAILED_DUE_TO_ACCOUNT_TYPE 

• CR_FAILED_DUE_TO_DEACTIVATED_USER 

• CR_FAILED_DUE_TO_DEACTIVATED_PARTY 

• CR_FAILED_DUE_TO_DEACTIVATED_BOOK 

 

As submitting orders need data from both Reference Data as well as Product Instances, the normal sequence 

for creating and managing orders should look like following: 



34  
 

 

Figure 6: ECT order management 

  

Hint: The OrdersUpdate event is NOT send out for orders setup by a Market Maker via Trading API! With 

that, there is a risk, that MarketMaker orders, changed through partial execution or via UI have a version 

which is not known to the MarketMaker Trading API client. In that particular case, the Trading API client 

cannot update (change) the order anymore, but has to cancel it and recreate. 



35  
 

6.5 TRADES 
This section describes trade queries available in ECT. Each trades query is executed by sending a 

GetTradesRequest: 

Property Type Description 

fromInclusive DateTimeOffset  Only trades having a Trade.timestamp equal to or 
greater than this value… 

toExclusive DateTimeOffset AND having a Trade.timestamp less than this value will 
be returned. 

 

As result, ECT will send back a GetTradesResponse containing all trades matching the query criteria or an 

error code: 

Property Type Description 

trades Trade collection  Contains all Trade (see section 6.3.1 Trades) items 
matching the criteria of the related GetTradesRequest 
message. 

isError Bool Boolean value, indicating whether an error occurred 
(true) or not (false). 

errorMessage String If field isError is set to true, this field will contain a 
detailed error description. 

 



36  
 

6.6 RFQ MANAGEMENT 
This section describes how to setup an RFQ and manage its life cycle:

 

Figure 7: ECT RFQ life cycle management 

ECT has two different roles for RFQ management: 

• Submitter: the party which wants to receive the quote (price). 

• Quoter: the party providing the quote (price). 

ECT Trading API has four different RfqRequest commands for managing the RFQ life cycle: 

• InsertRfqRequest: this is used by the RFQ submitter to create a new RFQ. In contrast to orders, an 

update of a once successfully submitted RFQ is not possible. If you need to change any property, the 

RFQ must be cancelled and re-submitted. 

• SubmitRfqQuoteRequest: this is used by the RFQ quoter, to quote an existing RFQ. Once a quote is 

being provided, the RFQ can be accepted. 

• TradeRfqRequest: this is used, to accept an already quoted RFQ. An RFQ, not being quoted, cannot 

be accepted. Once an RFQ has been accepted, a trade will be concluded over the RFQ between 

submitter and quoter. 



37  
 

• CancelRfqRequest: this is used to cancel an existing RFQ by either submitter or quoter (if applicable). 

Once an RFQ has been cancelled, it is removed completely from the system. 

The following table describes the InsertRfqRequest fields: 

Property Type Description 

direction Direction enum The direction of the RFQ from submitter’s POV: 

• DIR_BUY: The client wants to buy the underlying 

• DIR_SELL: The client wants to sell the underlying 

bookId Int64 The ID of the portfolio or contract agreement the RFQ 
should be put into. This is also the portfolio or contract 
agreement, into which the trade, resulting from the RFQ 
will be booked. 

marketAreaId Int64 The ID of the market area at which the RFQ’s (virtual) 
main delivery should take place. 

currencyId Int64 The ID of the Currency in which the price of the RFQ 
(quote) should be delivered. 
This is only used, if the ProductDefinition, referenced by 
the product instances, has additional currencies set. 
(see also ProductDefinition.additionalCurrencyIds). 
If this value is set to 0 (zero), the default currency of the 
ProductDefinition will be taken. 

quantityFlow QuantityFlowItem 
collection 

A collection of QuantityFlowItems describing the 
(virtual) main delivery. 
A Standard RFQ only contains exactly one item, a profile 
RFQ can contain multiple items. 
(see also section RFQs) 

isScheduled Bool If this value is set to true, the quote will be provided at 
the timestamp defined in field scheduleTime. 
If set to false, the quote will be delivered as soon as 
possible – note that there could be a delay under 
certain circumstances. 

scheduledTime DateTimeOffset Only used if field isScheduled is set to true: the 
timestamp when the quote should be provided earliest. 

clientCorrelationId String An optional ID set by the client. This value can be used 
to track the RFQ or trade concluded from it, on client 
systems with an own ID. 
It is only visible to users of the same party. 

comment String An optional comment set by the client. 
It is only visible to users of the same party. 

strategy String An optional value set by the client. 
It is only visible to users of the same party. 

 

 

The following table describes the SubmitRfqQuoteRequest fields: 

Property Type Description 

rfqId Int64 The ID of the existing RFQ to be quoted. 

Hint: An RFQ submission is only allowed, if all used ProductInstances in the quantityFlow items reference 

the very same ProductDefintion! 



38  
 

version Int32 The current version of the RFQ. 
If the version does not match the version on ECT side, 
the RFQ was modified by someone else and the 
request will fail. 

bookId Int64 The ID of the portfolio or contract agreement the RFQ 
quote should be put into. This is also the portfolio or 
contract agreement, into which the trade, resulting 
from the RFQ will be booked into (on quoter side). 

quote Double The quoted price for the RFQ. The price is quoted 
always in the default currency of the referenced 
ProductDefinition. 

fxRate Double If the submitter submitted the RFQ with a currency 
other than the ProductDefinition’s default currency, 
then this value is the FX rate with which the quote 
should be multiplied in order to get the quoted price. 
E.g.: The referenced ProductDefinition’s default 
currency is EUR and the RFQ was requested in CZK. The 
RFQ quoter calculates a price of 12 CZK and submits an 
FX rate of 0.039. Therefore, the backend can multiply 
the quote by the FX rate in order to derive a final 
quote price of 0.468 EUR. 

quoteComment String A public comment visible to all users of both RFQ 
parties: submitter and quoter. The value can only be 
set by the quoter, though. 

quoteExpiryTimeStamp DateTimeOffset The time stamp at which latest the RFQ will expire if 
not accepted. 

clientCorrelationId String An optional ID set by the client. This value can be used 
to track the RFQ or trade concluded from it, on client 
systems with an own ID. 
It is only visible to users of the same party. 

comment String An optional comment set by the client. 
It is only visible to users of the same party. 

strategy String An optional value set by the client. 
It is only visible to users of the same party. 

 

The following table describes the TradeRfqRequest fields: 

Property Type Description 

rfqId Int64 The ID of the existing RFQ to be traded/accepted. 

version Int32 The current version of the RFQ. 
If the version does not match the version on ECT side, 
the RFQ was modified by someone else and the request 
will fail. 

 

The following table describes the CancelRfqRequest fields: 

Property Type Description 

rfqId Int64 The ID of the existing RFQ to be cancelled. 

version Int32 The current version of the RFQ. 



39  
 

If the version does not match the version on ECT side, 
the RFQ was modified by someone else and the request 
will fail. 

 

Each RfqRequest command, submitted from the client to ECT, will be acknowledged with an 

RfqCommandResponse from ECT. 

To correlate a submitted RfqRequest with its RfqCommandResponse, it is recommended to set the 

CorrelationID header field on the AMQP message. If the CorrelationID was set, ECT automatically sets the 

value on the RfqCommandResponse’s message header. 

The following table describes the RfqResponseCommand type in detail: 

Property Type Description 

result RfqCommandResult 
enum 

Contains a return code expressing the success or failure of the submitted 
RFQ command: 

• RCR_SUCCEEDED 

• RCR_FAILED_DUE_TO_INVALID_STATE 

• RCR_FAILED_DUE_TO_INTERNAL_SERVER_ERROR 

• RCR_FAILED_DUE_TO_NO_QUANTITY_FLOWS_SUBMITTED 

• RCR_FAILED_DUE_TO_INVALID_BOOK 

• RCR_FAILED_DUE_TO_UNKNOWN_MARKET_AREA 

• RCR_FAILED_DUE_TO_MARKET_AREA_MISMATCH 

• RCR_FAILED_DUE_TO_MISSING_PRODUCT_INSTANCE 

• RCR_FAILED_DUE_TO_PRODUCT_TEMPLATE_MISMATCH 

• RCR_FAILED_DUE_TO_DUPLICATE_PRODUCT_INSTANCE 

• RCR_FAILED_DUE_TO_INVALID_SCHEDULED_TIME 

• RCR_FAILED_DUE_TO_INVALID_QUANTITY 

• RCR_FAILED_DUE_TO_NON_TRADING_ACCOUNT_TYPE 

• RCR_FAILED_DUE_TO_DEACTIVATED_USER 

• RCR_FAILED_DUE_TO_DEACTIVATED_COMPANY 

• RCR_FAILED_DUE_TO_DEACTIVATED_DESK 

• RCR_FAILED_DUE_TO_DEACTIVATED_CONTRACT_AGREEMENTS 

• RCR_FAILED_DUE_TO_DEACTIVATED_PORTFOLIOS 

• RCR_FAILED_DUE_TO_MISSING_TENOR_LIMIT 

• RCR_FAILED_DUE_TO_EXCEEDING_TENOR_LIMITS 

• RCR_FAILED_DUE_TO_EXCEEDING_QUANTITY_LIMITS 

• RCR_FAILED_DUE_TO_INSUFFICIENT_PRODUCT_PERMISSIONS 

• RCR_FAILED_DUE_TO_INVALID_QUOTE_EXPIRY_DATE 

• RCR_FAILED_DUE_TO_MISSING_RFQ 

• RCR_FAILED_DUE_TO_NOT_RFQ_OWNER 

• RCR_FAILED_DUE_TO_INVALID_QUOTE 

• RCR_FAILED_DUE_TO_VERSION_MISMATCH 

• RCR_FAILED_DUE_TO_INVALID_CURRENCYCR_FAILED_DUE_TO_
DEACTIVATED_BOOK 

isError Bool Boolean value, indicating whether an error occurred (true) or not (false). 

errorMessage String If field isError is set to true, this field will contain a detailed error 
description. 

 



40  
 

As submitting RFQs needs data from both Reference Data as well as Product Instances, the normal sequence 

for creating and managing RFQs from submitter perspective should look like following: 

 

Figure 8: ECT RFQ submitter workflow   



41  
 

The normal sequence for managing RFQs from quoter perspective should look like following: 

 

Figure 9: ECT RFQ quoter workflow 

 


