Fact Book
Incentive Regulation for German Energy Networks
December 2008
Contents

<table>
<thead>
<tr>
<th>PAGE</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>German Energy Law 2005</td>
</tr>
<tr>
<td>2</td>
<td>Grid Fees – 2006 to 2008</td>
</tr>
<tr>
<td>3</td>
<td>Cost Audit by the Regulator</td>
</tr>
<tr>
<td>4</td>
<td>Incentive Regulation from 2009</td>
</tr>
<tr>
<td>5</td>
<td>The Incentive Regulation Formula</td>
</tr>
<tr>
<td>6</td>
<td>How to Calculate Allowed Revenues – an Example</td>
</tr>
<tr>
<td>22</td>
<td>Summary: RWE Strategy for Incentive Regulation</td>
</tr>
<tr>
<td>23</td>
<td>Backup: RWE Grid Assets in Germany</td>
</tr>
</tbody>
</table>

1) Utilities with fewer than 100,000 electricity or gas customers can be regulated by one of the 16 federal states. The federal states may delegate responsibility to the BNetzA (federal grid agency).

2) Exemption of gas Transport System Operators from regulation if effective competition between Transport System Operators exists. This has been since overruled by the Federal Regulator in late 2008.
The German Energy Industry Act of 2005: Key Elements

> Act on the regulation of the German electricity and gas markets (Energiewirtschaftsgesetz – EnWG) became effective on July 13, 2005.

> Under the Act, the German Federal Grid Agency ("Bundesnetzagentur" (BNetzA)) is in charge of regulating grid access as well as electricity and gas grid fees.

> Grid operators with fewer than 100,000 electricity or gas customers can be regulated by one of the 16 federal states. Several federal states have delegated this responsibility to the BNetzA.

> All grid fees are subject to prior approval (ex-ante regulation).

> The historic method of calculating grid fees – based on current cost accounting – is maintained for existing assets. Since 2006, investment in new assets is subject to regulation based on historic cost accounting with inflation-adjusted returns.

> Incentive regulation, on the basis of a legal directive, to become effective in January 2008 (later postponed to 2009). Directive on Incentive Regulation (AREgV) can be found under: http://www.bundesrecht.juris.de/bundesrecht/aregv/gesamt.pdf (only available in German language)

> The tariff-rate approval by the federal states for residential customer's electricity tariffs was abolished as of July 1, 2007.
RWE Energy Grid Revenue Cuts\(^1\) in Germany - equivalent to average grid operator cuts

<table>
<thead>
<tr>
<th>Electricity</th>
<th>Cost cuts 06/07</th>
<th>Cost cuts 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO Electricity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWE Transportnetz Strom</td>
<td>-9%</td>
<td>-16%</td>
</tr>
<tr>
<td>Region North</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWE Westfalen-Weser-Em</td>
<td>-10%</td>
<td>-8%</td>
</tr>
<tr>
<td>Region Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWE Rhein-Ruhr</td>
<td>-11%</td>
<td>-13%</td>
</tr>
<tr>
<td>Region South West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Süwag Energie AG</td>
<td>-14%</td>
<td>-1%</td>
</tr>
<tr>
<td>Region West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energis</td>
<td>-13%</td>
<td>-7%</td>
</tr>
<tr>
<td>Region South</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lechwerke</td>
<td>-12%</td>
<td>-1%</td>
</tr>
<tr>
<td>Region East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enviaM</td>
<td>-12%</td>
<td>-5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas(^2)</th>
<th>Cost cuts 06/07</th>
<th>Cost cuts 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWE Transportnetz Gas</td>
<td>Exempted due to competitive pricing</td>
<td>Due to restructuring no regional values available.</td>
</tr>
<tr>
<td>Region North</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWE Westfalen-Weser-Em</td>
<td>-26%</td>
<td></td>
</tr>
<tr>
<td>Region Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWE Rhein-Ruhr</td>
<td>-19%</td>
<td></td>
</tr>
<tr>
<td>Region South West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Süwag Energie AG</td>
<td>-14%</td>
<td></td>
</tr>
</tbody>
</table>

Results of cost audits 2008 (based on 2006 costs) are of particular importance because they also will be the starting point for the revenue path of the incentive regulation.

1) Disclosed external revenue significantly higher due to transferred subsidies for renewables and CHP, concession fees and other services not exposed to regulation.
2) Excluding Region East (Mitgas) as it is not consolidated anymore.
Ca. €1bn reduction in grid fees 2006 – 2008 has already been compensated within RWE Energy

Operating Result

- Network regulation
- Process optimisation/cost reduction
- Network asset management
- Organic growth (e.g. retail)

Burdens

Compensation

2008 €2.5 billion

Actual 2005 €2,507 million

RWE grid fees 2006 to 2008

Ca. €1bn reduction in grid fees 2006 – 2008 has already been compensated within RWE Energy

RWE grid fees 2006 to 2008
Cost Audit by the Regulator – The Model before Incentive Regulation

| Expense-like Costs | > OPEX (cost of raw material, staff cost, maintenance, cost of other purchased material and services, allocated overhead costs etc.)
<table>
<thead>
<tr>
<th></th>
<th>> Real debt expenses</th>
</tr>
</thead>
</table>
| **Imputed Depreciation** | > Method of linear depreciation
| | > For the equity share of old assets (capitalised before 01/01/2006), depreciation is based on current cost accounting
| | > All other depreciation based on historic cost accounting |
| **Imputed Return on Equity** | > For old assets (capitalised before 01/01/2006) the RoE is applied as a real value (current cost accounting)
| | > For new assets (capitalised after 01/01/2006) the RoE is applied as a nominal value (historic cost accounting) |
| **Taxes** | > Calculated trade tax |
| **Cost-reducing Revenue** | > Operating liabilities (provisions)
| | > Advances and construction grants | |
| +/- | **Period-overlapping Balancing** | > Amount the grid operator has over- or undercharged e.g. because of fluctuating volumes for consumption rate |
| == | **Cost (basis for grid fees)** |
Treatment of Return on Equity and Taxes

RoE

- The permitted proportion of equity financed assets is restricted to 40%.
- Current cost accounting for rate of return and imputed depreciation will continue to apply for all investments until December 31, 2005.
- All investments as from January 1, 2006, will yield interest based on the method of inflation-adjusted historic cost accounting and be subjected to imputed depreciation.

TAXES

- **Corporation tax:** No recognition until incentive regulation has become effective (then reflected in higher RoE)
- **Trade tax:** full recognition (pass-through)
A grid operator’s revenue cap is determined by its CAPEX and a specified rate of return:
\[\text{Revenue} = \text{CAPEX} + \text{RoE} \]
Efficiency gains resulting from cost reductions are directly passed through to the end consumer.
Problem: Since grid operators are always reimbursed for their costs, they do not have any incentive to reduce costs.

Incentive Regulation from 2009

Cost-based Regulation
- A grid operator’s revenue cap is determined by its CAPEX and a specified rate of return: \(\text{Revenue} = \text{CAPEX} + \text{RoE} \)
- Efficiency gains resulting from cost reductions are directly passed through to the end consumer.
- Problem: Since grid operators are always reimbursed for their costs, they do not have any incentive to reduce costs.

Incentive-based Regulation
- Principle: Decoupling of revenue from costs
- Incentive: Grid operators may temporarily generate higher profits if they release efficiency reserves and reduce costs.
- Efficiency gains are initially delayed, but passed on to the customer permanently.

![Graph showing cost vs. incentive-based regulation](image-url)
Incentive Regulation Timeline

> Timeline for Electricity to be read as follows: In 2012, audit of costs of year 2011 (sample year) for benchmarking in 2013, first application of 2nd regulatory period in 2014
> Gas and Electricity with different timelines to relieve the process of auditing
How Allowed Revenue is Calculated –
The Regulation Formula

\[R_t = C_{ni,t} + \left[C_{iB,0} + (1 - V_t) \times C_i,0 \right] \times \left(\frac{CPI_{t-2}}{CPI_0} - XF_t \right) \times EF_t + Q_t \]

- **R_t** = Allowed revenue in the year t
- **C_{ni,t}** = Costs that cannot be influenced, i.e. employee benefit costs and grid fees for higher voltage levels (e.g. transport grid fees), applicable for year t
- **C_{iB,0}** = Influenceable costs of the benchmark company in the reference year
- **V_t** = Percentage of inefficiency that has to be reduced by the end of year t
- **C_i** = Costs that are caused by inefficiency of the individual company
- **CPI** = Consumer price index
- **XF** = General X-factor, based on 1.25% in the 1st regulatory period;
 - \(XF_{2009} = 0.0125 = 1.25\% \)
 - \(XF_{2010} = 1.0125 \times 1.0125 - 1 = 0.025 = 2.52\% \)
- **EF** = Expansion factor; dependent on number of connections to grid (50%) and on the size of the service area (50%)
- **Q** = Quality component (not yet implemented)
- **t** = index running from 1 to 5 (basis 0 is reference year)
5 The Incentive Regulation Formula

Revenue Cap: Composition of Costs

- Inefficient company A
 - Inefficient costs
 - "inefficient" costs that must be reduced:
 > Annual revenue reductions are calculated so as to fully eliminate inefficiencies at the end of the second regulatory period
 - Efficient costs
 - "efficient" costs determined based on benchmarking:
 > Benchmarking is conducted using the DEA and SFA\(^1\) methods on the one hand, and on the basis of standardized costs\(^2\) and costs that have actually been approved on the other hand.
 > The most favourable result for the company is chosen ("best of four" – see page 14)
 - Non-influenceable costs
 - Costs associated with the higher grid levels, advances and construction grants, subsidies for decentralized generation, ancillary staff costs (e.g. company kindergarten)
 - Costs are not fixed, but represent a "transitory item" with a time lag for the grid operator.
 - Investment budgets will be treated as non-influenceable costs (see further details on page 13)

- Efficient company B (benchmark)
 - Efficient costs
 - Benchmarking is conducted using the DEA and SFA\(^1\) methods on the one hand, and on the basis of standardized costs\(^2\) and costs that have actually been approved on the other hand.
 - The most favourable result for the company is chosen ("best of four" – see page 14)

- Examples
 - Capital costs
 - Operating costs
 - Energy related costs
 - E.g. costs from the higher grid levels

\(R_t = C_{ni,t} + \left[C_{IB,0} + (1 - V_t) \times C_{i,0} \right] \times \left(\frac{\text{CPI}_{t-2} \times X_F}{\text{CPI}_0} \right) \times E_F + Q_t \)

\(^1\) DEA = "Data Envelopment Analysis", SFA = "Stochastic Frontier Analysis"
\(^2\) The standardization eliminates differences due to the age structure of the assets
Investment Budgets are considered non-influenceable costs

> For extensions and restructuring measures it is possible to file for investment budgets:
 - In case of approval capital costs are considered as non-influenceable costs
 - Duration of the approved budget depends on the respective project

> Triggers for application:
 - Increasing wind generation
 - Relocation of conventional generation and nuclear phase-out
 - Increasing cross-border trades

> The effects of the systematic 2-year delays in payback are capitalized and compensated upon completion
5 The Incentive Regulation Formula

Benchmarking

\[V_t = \frac{t}{10} \quad \text{(first period)} \quad \frac{t}{5} \quad \text{(second period)} \]

(Relative inefficiency can be max. 40%, meaning that in each year of the first period a maximum of 4% of influenceable costs must be reduced)

Methods

> The aim is to set efficiency limits based on combinations of inputs (e.g. total costs) and outputs (e.g. electricity distribution in kWh).

> Grid operator inefficiencies can be determined based on their position relative to these limits.

> In principle, the directive prescribes two methods for determining efficiency.

 - DEA (Data Envelopment Analysis)
 - SFA (Stochastic Frontier Analysis)

> The two methods are based on different approaches (stochastic and non-stochastic) and may thus deliver different results.

> "Best of Four": the best result from two DEA and two SFA benchmarks (one with real and one with standardized costs each)

> Furthermore a 60% minimum of efficiency is applied

Large & Small Grid Operators

> The DEA measures large companies against the most efficient company overall and small companies against the most efficient of their peers.

> Grid operators with a maximum of 30,000 customers (electricity and gas, of which no more than 15,000 are gas customers) can opt for the "simplified method":

 - Companies are assigned an efficiency of 87.5% across the board.
 - The share of total costs attributable to non influenceable costs is set at 45%
 - Grid operators are then bound to their decision for one period (electricity: 5 years, gas: 4 years).
 - Eliminates the extension factor, quality malus and bonus as well as the need for approval of the investment budget

RWE Fact Book – Incentive Regulation | December 2008

PAGE 14
Revenue Cap: Adjustments in the Course of Time

The Incentive Regulation Formula

\[R_t = C_{ni,t} + [C_{IB,0} + (1 - V_t) \times C_{i,0}] \times CPI_{t-2} + Q_t - XF_t \times EF_t \]

Revenue Cap:

- **Revenue target w/o non influenceable costs**

CPI_t-2

Adjustment by the overall consumer price index (CPI) of the last available calendar year.

XF_t

The revenue path is reduced by a global XF of 1.25% p.a. in the first and 1.5% p.a. in the second period for ALL grid operators.

Inefficient costs

- CPI
- Adjustment by the overall consumer price index (CPI) of the last available calendar year.
- Efficient costs

Efficient costs

- Grid costs based on sample year
- Revenue target w/o non influenceable costs

Jan 1, 2009

1st period*

Jan 1, 2013/14

2nd period

Jan 1, 2018/19

* Electricity: 5 years, gas: 4 years
** Electricity 2014/2019, Gas 2013/2018
5 The Incentive Regulation Formula

Expansion Factor for DSOs

- Grid expansions can be factored into the revenue caps on an annual basis by way of the expansion factor.

- The expansion factor relates to the DSO only (e.g. connection of new residential areas), while TSO extensions are mirrored in the investment budgets.

- The expansion factor applies to the high-voltage, medium-voltage and low-voltage levels (electricity) or the pipelines as a collective, independent of pressure ratings (gas).

- The expansion is measured by the relative growth of the area supplied (low voltage) and the relative growth of the number of connections.
5 The Incentive Regulation Formula

Quality Regulation

Possible reliability indices for electricity grids

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Standardized Reliability Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruption frequency</td>
<td>1/a</td>
<td>SAIFI</td>
</tr>
<tr>
<td>Duration of Interruption</td>
<td>min</td>
<td>CAIDI</td>
</tr>
<tr>
<td>No supply</td>
<td>min/a</td>
<td>SAIDI</td>
</tr>
</tbody>
</table>

SAIFI: System Average Interruption Frequency Index

CAIDI: Customer Average Interruption Duration Index

SAIDI: System Average Interruption Duration Index

> Since profit can be raised by reducing costs under incentive-based regulation, a negative effect may be felt in terms of quality or security of supply.

> Therefore, the German Incentive Regulation Directive (ARegV) includes a quality regulation provision.

> The plan envisions a bonus/malus system oriented to quality parameters.

> It is possible although not certain that there will be sufficient data in the first period. However, consultation sessions on the details of quality regulation for the second period are already underway.

> The chart shows parameters that could be used to measure quality in electricity grid operation.
Case 2: Revenue Cap Adjustment

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Revenue</td>
<td>Revenue Delta >5% (Gas >10%)</td>
<td>Adjustment of grid fees becomes necessary already during the period</td>
<td>Revenue Cap</td>
<td>Actual Revenue</td>
</tr>
</tbody>
</table>

Case 1 depicts a scenario where the regulatory account balance is positive, i.e., the grid operator earned too much in the end in Period 1. The revenue cap for the following period is adjusted by this (interest-bearing) balance.

Case 2 depicts a scenario where the deviation within a period (in year 2) is too high, i.e., actual revenue differs from allowed revenue by more than 5% (electricity) and 10% (gas). Therefore, compensation must be adjusted within the period (year 3) in order to avoid exorbitant revenue deviations.

> Differences driven by volume fluctuations of energy transported between actual and allowed revenue are booked to a regulatory account on an annual basis. Annual compensation adjustments are pointless for reasons of price stability, therefore annual revenues above target or below target are netted.

> The balance of the regulatory account accrues interest and is distributed over the years of the second regulatory period.
Example: Electricity Distribution
Grid Company A

> In the reference year 2006, company A received grid revenues of €150m.
> €50m out of the €150m could not be influenced; we assume, that this number remains unchanged in the following years.
> The remaining €100m are considered influenceable. They are contrasted with the corresponding figure of the benchmark company B, which is €90m.
> The difference between the influenceable costs of company A (€100m) and of the benchmark company B (€90m) is classified as inefficiency (€10m) which has to be fully eliminated within ten years.
> For calculating inflation, the regulator divides the consumer price index of two years ago (CPI_{t-2}) by the CPI of the reference year 2006 (CPI_0). We assume a constant inflation rate of 2% p.a.
 – CPI_{2006} = 100% = 1.0
 – CPI_{2007} = 102% = 1.02
 – CPI_{2008} = 104% = 1.02 \times 1.02
> Company A has connected new customers to its grid since 2006 and thereby increased its service area. In both respects, growth is assumed to be 0.5% p.a., leading to an expansion factor of 1.02 in 2010. The expansion factor is not applied in the first year.
Allowed Revenue of Grid Company A

\[R_t = C_{ni,t} + \left[C_{iB,0} + (1 - V_t) \times C_{i,0} \right] \times \left(\frac{CPI_{t-2}}{CPI_0} - XF_t \right) \times EF_t + Q_t \]

in 2009

<table>
<thead>
<tr>
<th></th>
<th>(R_{2009})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{ni,t})</td>
<td>50</td>
</tr>
<tr>
<td>(C_{iB,0})</td>
<td>90</td>
</tr>
<tr>
<td>(C_{i,0})</td>
<td>(1 - 0.1) x 10</td>
</tr>
<tr>
<td>(CPI_{t-2})</td>
<td>1.02 - 0.0125</td>
</tr>
<tr>
<td>(CPI_0)</td>
<td>1</td>
</tr>
<tr>
<td>(XF_t)</td>
<td>0</td>
</tr>
<tr>
<td>(EF_t)</td>
<td>1.0075</td>
</tr>
<tr>
<td>(Q_t)</td>
<td>0</td>
</tr>
<tr>
<td>(\left[90 + (1 - 0.1) \times 10 \right] \times 1.0075)</td>
<td>99 x 1.0075</td>
</tr>
<tr>
<td>(\left[90 + 9 \right] \times 1.0075)</td>
<td>99.74</td>
</tr>
<tr>
<td>(50 + 99 \times 1.0075)</td>
<td>149.74</td>
</tr>
</tbody>
</table>

in 2010

<table>
<thead>
<tr>
<th></th>
<th>(R_{2010})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{ni,t})</td>
<td>50</td>
</tr>
<tr>
<td>(C_{iB,0})</td>
<td>90</td>
</tr>
<tr>
<td>(C_{i,0})</td>
<td>(1 - 0.2) x 10</td>
</tr>
<tr>
<td>(CPI_{t-2})</td>
<td>1.04 - 0.025</td>
</tr>
<tr>
<td>(CPI_0)</td>
<td>1.020</td>
</tr>
<tr>
<td>(XF_t)</td>
<td>0</td>
</tr>
<tr>
<td>(EF_t)</td>
<td>1.0357</td>
</tr>
<tr>
<td>(Q_t)</td>
<td>0</td>
</tr>
<tr>
<td>(\left[90 + (1 - 0.2) \times 10 \right] \times 1.0357)</td>
<td>98 x 1.0357</td>
</tr>
<tr>
<td>(\left[90 + 8 \right] \times 1.0357)</td>
<td>101.48</td>
</tr>
<tr>
<td>(50 + 98 \times 1.0357)</td>
<td>151.48</td>
</tr>
</tbody>
</table>
Further Development of the Revenue Cap

Period 1

<table>
<thead>
<tr>
<th>Year</th>
<th>Non-influencable costs</th>
<th>Reduction of influence-able costs</th>
<th>Inflation</th>
<th>General X</th>
<th>Expansion-Factor</th>
<th>Revenue Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>50</td>
<td>99</td>
<td>1.02</td>
<td>0.013</td>
<td>1</td>
<td>149.74</td>
</tr>
<tr>
<td>2010</td>
<td>50</td>
<td>98</td>
<td>1.04</td>
<td>0.025</td>
<td>1.020</td>
<td>151.48</td>
</tr>
<tr>
<td>2011</td>
<td>50</td>
<td>97</td>
<td>1.06</td>
<td>0.038</td>
<td>1.025</td>
<td>151.74</td>
</tr>
<tr>
<td>2012</td>
<td>50</td>
<td>96</td>
<td>1.08</td>
<td>0.051</td>
<td>1.030</td>
<td>151.99</td>
</tr>
<tr>
<td>2013</td>
<td>50</td>
<td>95</td>
<td>1.10</td>
<td>0.064</td>
<td>1.035</td>
<td>152.26</td>
</tr>
</tbody>
</table>
Summary: For RWE the grid business is profitable and strategically attractive

- Attractive Starting Point
 - Stable profitability and cash flow in a volatile market environment
 - Robust against power and fuel price changes, carbon-neutral
 - Established incentive regulation minimizes regulatory risks
 - Assigned efficiency to RWE grids above average

- Distinguished Core Competency
 - Experienced regulatory management
 - High efficiency shows track record of RWE’s competence
 - Outstanding knowledge and “best practice” – benchmark within RWE Energy established
 - Engineering: grid upgrade for new businesses (e-mobility, smart meter)

- Potential for Value Accretion and Growth
 - Long term, value accretive investment opportunities
 - Chance to outperform due to roll out of best practices, e.g. workforce management, standardized procurement, regulatory optimized investment (also leading to reduced maintenance)
 - Growth through further grid-cooperation (joint grid companies, DSO-Lease, grid service for external customers, new technologies)

Incentive Regulation leads to planning reliability and outperformance potential
RWE Grid Assets in Germany

Electricity

<table>
<thead>
<tr>
<th>Segment</th>
<th>Lines</th>
<th>Transformer Stations</th>
<th>Connections</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EHV and HV ≥ 110 kV</td>
<td>MV and LV < 110 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share in German grid</td>
<td>32%</td>
<td>20%</td>
<td>89,915</td>
<td>3,850,000</td>
</tr>
</tbody>
</table>

Gas

<table>
<thead>
<tr>
<th>Segment</th>
<th>TSO Gas</th>
<th>DSO Gas</th>
<th>Transformer Stations</th>
<th>Connections</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share in German grid</td>
<td>7%</td>
<td>11%</td>
<td></td>
<td>8,500</td>
<td>645,000</td>
</tr>
</tbody>
</table>

Definitions:
- EHV = Extremely high voltage
- HV = High voltage
- MV = Medium voltage
- LV = Low voltage
- TSO = Transmission System Operator
- DSO = Distribution System Operator